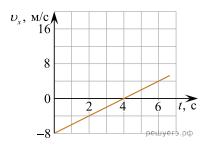
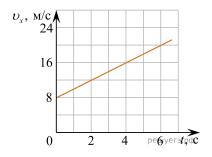
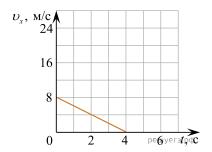
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

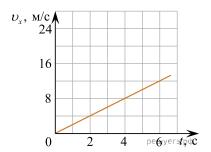

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

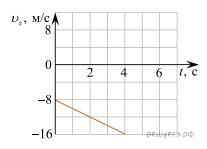
1. Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:



2. Велосипедист равномерно движется по шоссе. Если за промежуток времени $\Delta t_1 = 5,0$ с он проехал путь $s_1 = 60$ м, то за промежуток времени $\Delta t_2 = 7,0$ с велосипедист проедет путь s_2 , равный:


3. Проекция скорости движения тела v_x на ось Ox зависит от времени t согласно закону $v_x = A + Bt$, где A = -8 м/с, B = 2 м/с². Этой зависимости соответствует график (см. рис.), обозначенный буквой:


a)


б)

в)

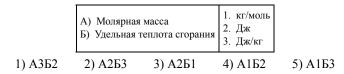
r)

д)

- 1) a 2) б
- 3) в
- 4) г
- 5) д

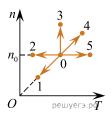
4. На поверхности Земли на тело действует силя тяготения, модуль которой $F_1=144~\rm H.$ Если это тело находится на расстоянии $R=2R_3~(R_3~-$ радиус Земли) от центра Земли, то на него действует сила тяготения, модуль которой F_2 равен:

- 1) 16 H
- 2) 24 H
- 3) 36 H
- 4) 48 H
- 5) 72 H


5. Металлический шарик массой m=80 г падает вертикально вниз на горизонтальную поверхность стальной плиты и отскакивает от нее вертикально вверх с такой же по модулю скоростью: $\upsilon_2=\upsilon_1$. Если непосредственно перед падением на плиту модуль его скорости $\upsilon_1=5,0$ $\frac{\mathrm{M}}{\mathrm{C}}$, то модуль изменения импульса $|\Delta p|$ шарика при ударе о плиту равен:

1)
$$0.2\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$$
 2) $0.4\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 3) $0.6\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 4) $0.8\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 5) $1.0\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$

6. В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1.00 \text{ г/см}^3$) высотой H = 6.8 см. Разность Δh уровней ртути в сосудах равна:

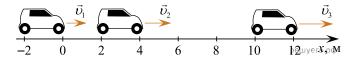

- 1) 8,8 мм
- 2) 7,3 мм
- 3) 6,0 мм
- 4) 5,0 мм
- 5) 3,0 мм

7. Установите соответствие между физической величиной и единицей её измерения:

8. Если при изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа увеличилось на $\Delta p=120~\mathrm{k\Pi a}$, а абсолютная температура возросла в $k=2,00~\mathrm{pasa}$, то давление p_2 газа в конечном состоянии равно:

9. На рисунке изображена зависимость концентрации n молекул от температуры T для пяти процессов с идеальным газом, количество вещества которого постоянно. Давление газа p изохорно увеличивалось в процессе:

10. Физической величиной, измеряемой в джоулях, является:

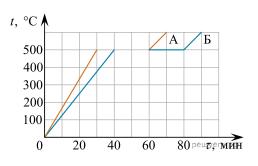

1) индуктивность 2) сила Лоренца 3) энергия магнитного поля 4) сила тока 5) сила Ампера

11. Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $\upsilon_1=10$ м/с и $\upsilon_2=15$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L=100 м, то чему равна высота H? Ответ приведите в метрах.

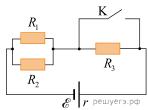
12. К бруску массой m=0,50 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k=20 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной, а модуль ускорения бруска a=2,4 м/с 2 . Если длина пружины в недеформированном состоянии $l_0=12$ см, то ее длина l при движении равна ... см.

13. На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=215 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}=1,00~{\rm r/cm}^3$), равный ... см³.

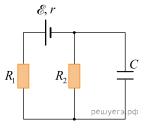
14. На рисунке представлены фотографии электромобиля, сделанные через равные промежутки времени $\Delta t=1.8$ с. Если электромобиль двигался прямолинейно и равноускоренно, то в момент времени, когда был сделан второй снимок, проекция скорости движения электромобиля υ_{χ} на ось Ox была равна ... км/ч.



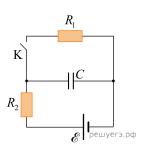
15. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m=2,00 кг, а площадь поперечного сечения $S=10,0\,$ см 2 , содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого $p_0=100\,$ кПа. Если начальная температура газа и объем $T_1=300\,$ К и $V_1=4,00\,$ л соответственно, а при изобарном нагревании изменение его температуры $\Delta T=160\,$ К, то работа A, совершенная силой давления газа, равна ... Дж.

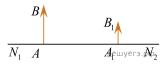


16. Микроволновая печь потребляет электрическую мощность P=1,2 кВт. Если коэффициент полезного действия печи $\eta=63\%$, то вода $(c=4,2\frac{\kappa \cancel{\square} \kappa}{\kappa \Gamma \cdot {}^{\circ} C})$ массой m=0,40 кг за промежуток времени $\Delta \tau=80$ с, нагреется от температуры $t_1=15$ ${}^{\circ} C$ до температуры t_2 равной ... ${}^{\bullet} C$.


17. Два образца А и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец А имеет массу $m_{\rm A}=4,5~{\rm Kr},~{\rm то}~{\rm образец}~{\rm Б}~{\rm имеет}~{\rm массу}~m_{\rm B}, равную ...~{\rm kr}.$

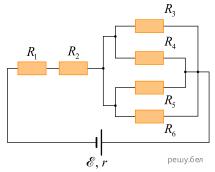
18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=6,00\,$ Ом, $R_3=2,00\,$ Ом. По цепи в течение промежутка времени $t=30,0\,$ с проходит электрический ток. Если ЭДС источника тока $\epsilon=12,0\,$ В, а его внутреннее сопротивление $r=1,00\,$ Ом, то работа $A_{\rm CT.}$ сторонних сил источника тока при разомкнутом ключе К равна ... Дж.


19. Электрическая цепь состоит из источника постоянного тока с ЭДС $\varepsilon=120~\mathrm{B}$ и с внутренним сопротивлением $r=2,0~\mathrm{Om}$, конденсатора ёмкостью $C=0,60~\mathrm{mk\Phi}$ и двух резисторов (см. рис.). Если сопротивления резисторов $R_1=R_2=5,0~\mathrm{Om}$, то заряд q конденсатора равен ... мкКл.


20. Сила тока в проводнике зависит от времени t по закону I(t)=B+Ct, где B=8,0 A, C=0,50 A/c. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1=2,0$ с до $t_2=6,0$ с? Ответ приведите в кулонах.

21. В идеальном LC-контуре происходят свободные электромагнитные колебания. Максимальное напряжение на конденсаторе контура $U_0=3.0\,$ В, максимальная сила тока в катушке $I_0=1.2\,$ мА. Если индуктивность катушки $L=75\,$ мГн, то ёмкость C конденсатора равна ... нФ.

22. Электрическая цепь состоит из источника постоянного тока с ЭДС $\varepsilon=300$ В, двух резисторов сопротивлениями $R_1=100$ Ом, $R_2=200$ Ом и конденсатора ёмкостью C=10 мкФ (см. рис.). В начальный момент времени ключ К был замкнут и в цепи протекал постоянный ток. Если внутренним сопротивлением источника тока пренебречь, то после размыкания ключа К на резисторе R_2 выделится количество теплоты Q, равное ... мДж

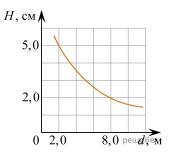

23. Стрелка AB высотой H=4,0 см и её изображение A_1B_1 высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.

- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\phi = 30$ В, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт \cdot ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \,\text{Om}.$$


В резисторе R_6 выделяется тепловая мощность $P_6 = 90.0$ Вт. Если внутреннее сопротивление источника тока r = 4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мкФ.

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

